复合材料玻璃纤维属于产业用纺织品,在军工,汽车,造船等行业广泛应用。我国的玻璃纤维产量站到全球的75%以上。但由于该行业在我国起步较晚,设备自动化程度不高,产品质量难以控制,产品以中低端为主。企业迫切需要采用机器实现自动化检测,替代人工,保证产品质量。
1、关键技术
建立有效的玻璃纤维产品疵点纹理图像预处理方法西安获德将该方法应用于玻璃纤维图像增强方面能使图像边缘明显突出、纹理更加清晰和非线性保留图像平滑区域细节信息。
2、基于深度学习的疵点分类方法
玻璃纤维产品多样化,检测需求各不相同,根据各种玻璃纤维产品的纹理特征,采用模式识别的先进方法深度学习方法,对各种产品的缺陷不断收集,不断学习,形成良好的分类模型,对检测到的缺陷进行正确分类,并对玻璃纤维产品质量进行客观评价。
3、工业环境下机器视觉系统的架构
搭建高速的图像处理平台,以满足高速的生产线在线检测。解决工业现场环境差,系统稳定性不好的问题。纺织厂的环境一般是高温,高湿,并且灰尘较多,但工业环境下的检测要求是24小时,365天不间断的工作。因此西安获德经过长期调研及现场经验,研发了能够满足纺织行业环境下的机器视觉检测硬件系统。